Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Epigenetics ; 16(1): 42, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491513

RESUMO

BACKGROUND: Congenital heart disease (CHD) is a prevalent congenital cardiac malformation, which lacks effective early biological diagnosis and intervention. MicroRNAs, as epigenetic regulators of cardiac development, provide potential biomarkers for the diagnosis and treatment of CHD. However, the mechanisms underlying miRNAs-mediated regulation of cardiac development and CHD malformation remain to be further elucidated. This study aimed to explore the function of microRNA-20b-5p (miR-20b-5p) in cardiac development and CHD pathogenesis. METHODS AND RESULTS: miRNA expression profiling identified that miR-20b-5p was significantly downregulated during a 12-day cardiac differentiation of human embryonic stem cells (hESCs), whereas it was markedly upregulated in plasma samples of atrial septal defect (ASD) patients. Our results further revealed that miR-20b-5p suppressed hESCs-derived cardiac differentiation by targeting tet methylcytosine dioxygenase 2 (TET2) and 5-hydroxymethylcytosine, leading to a reduction in key cardiac transcription factors including GATA4, NKX2.5, TBX5, MYH6 and cTnT. Additionally, knockdown of TET2 significantly inhibited cardiac differentiation, which could be partially restored by miR-20b-5p inhibition. CONCLUSIONS: Collectively, this study provides compelling evidence that miR-20b-5p functions as an inhibitory regulator in hESCs-derived cardiac differentiation by targeting TET2, highlighting its potential as a biomarker for ASD.


Assuntos
Dioxigenases , MicroRNAs , Humanos , Diferenciação Celular , Dioxigenases/genética , DNA/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
2.
FASEB J ; 37(10): e23182, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37682013

RESUMO

A link between increased glycolysis and vascular calcification has recently been reported, but it remains unclear how increased glycolysis contributes to vascular calcification. We therefore investigated the role of PFKFB3, a critical enzyme of glycolysis, in vascular calcification. We found that PFKFB3 expression was upregulated in calcified mouse VSMCs and arteries. We showed that expression of miR-26a-5p and miR-26b-5p in calcified mouse arteries was significantly decreased, and a negative correlation between Pfkfb3 mRNA expression and miR-26a-5p or miR-26b-5p was seen in these samples. Overexpression of miR-26a/b-5p significantly inhibited PFKFB3 expression in VSMCs. Intriguingly, pharmacological inhibition of PFKFB3 using PFK15 or knockdown of PFKFB3 ameliorated vascular calcification in vD3 -overloaded mice in vivo or attenuated high phosphate (Pi)-induced VSMC calcification in vitro. Consistently, knockdown of PFKFB3 significantly reduced glycolysis and osteogenic transdifferentiation of VSMCs, whereas overexpression of PFKFB3 in VSMCs induced the opposite effects. RNA-seq analysis and subsequent experiments revealed that silencing of PFKFB3 inhibited FoxO3 expression in VSMCs. Silencing of FoxO3 phenocopied the effects of PFKFB3 depletion on Ocn and Opg expression but not Alpl in VSMCs. Pyruvate or lactate supplementation, the product of glycolysis, reversed the PFKFB3 depletion-mediated effects on ALP activity and OPG protein expression in VSMCs. Our results reveal that blockade of PFKFB3-mediated glycolysis inhibits vascular calcification in vitro and in vivo. Mechanistically, we show that FoxO3 and lactate production are involved in PFKFB3-driven osteogenic transdifferentiation of VSMCs. PFKFB3 may be a promising therapeutic target for the treatment of vascular calcification.


Assuntos
Proteína Forkhead Box O3 , MicroRNAs , Fosfofrutoquinase-2 , Calcificação Vascular , Animais , Camundongos , Glicólise , Ácido Láctico , Músculo Liso Vascular , Monoéster Fosfórico Hidrolases , Calcificação Vascular/genética , Fosfofrutoquinase-2/metabolismo , Proteína Forkhead Box O3/metabolismo
3.
Front Cell Neurosci ; 17: 1193362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534043

RESUMO

Tumor suppressor gene p53 and its aggregate have been found to be involved in many angiogenesis-related pathways. We explored the possible p53 aggregation formation mechanisms commonly occur after ischemic stroke, such as hypoxia and the presence of reactive oxygen species (ROS). The angiogenic pathways involving p53 mainly occur in nucleus or cytoplasm, with one exception that occurs in mitochondria. Considering the high mitochondrial density in brain and endothelial cells, we proposed that the cyclophilin D (CypD)-dependent vascular endothelial cell (VECs) necrosis pathway occurring in the mitochondria is one of the major factors that affects angiogenesis. Hence, targeting p53 aggregation, a key intermediate in the pathway, could be an alternative therapeutic target for post-stroke management.

4.
J Org Chem ; 88(12): 7844-7848, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724384

RESUMO

A highly regiospecific vinylogous carbene insertion protocol for direct asymmetric C-H functionalization of indoles with arylvinyldiazoacetates has been developed. Under the catalysis of simple Rh(I)/chiral diene complexes, the reaction occurs solely at the vinylogous position of the vinylcarbenoid with exceptional E selectivity and enantiocontrol. It provides an efficient way to obtain an interesting class of chiral indole scaffolds bearing an α,ß-unsaturated ester unit and a gem-diaryl carbon stereocenter in good yields (≤99%) with excellent enantioselectivities (≤96%) at room temperature.


Assuntos
Ródio , Estereoisomerismo , Catálise , Indóis , Polienos
5.
Vascul Pharmacol ; 146: 107096, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35952961

RESUMO

Recent studies have shown that short-chain fatty acids (SCFAs), primarily acetate, propionate and butyrate, play a crucial role in the pathogenesis of cardiovascular disease. Whether SCFAs regulate vascular calcification, a common pathological change in cardiovascular tissues, remains unclear. This study aimed to investigate the potential role of SCFAs in vascular calcification. Using cellular and animal models of vascular calcification, we showed that butyrate significantly enhanced high phosphate (Pi)-induced calcification and osteogenic transition of vascular smooth muscle cells (VSMC) in vitro, whereas acetate and propionate had no effects. Subsequent studies confirmed that butyrate significantly promoted high Pi-induced aortic ring calcification ex vivo and high dose vitamin D3 (vD3)-induced mouse vascular calcification in vivo. Mechanistically, butyrate significantly inhibited histone deacetylase (HDAC) expression in VSMCs, and a pan HDAC inhibitor Trichostatin A showed similar inductive effects on calcification and osteogenic transition of VSMCs to butyrate. In addition, the SCFA sensing receptors Gpr41 and Gpr109a were primarily expressed by VSMCs, and butyrate induced the rapid activation of NF-κB, Wnt and Akt signaling in VSMCs. Intriguingly, the NF-κB inhibitor SC75741 significantly attenuated butyrate-induced calcification and the osteogenic gene Msx2 expression in VSMCs. We showed that knockdown of Gpr41 but not Gpr109a attenuated butyrate-induced VSMC calcification. This study reveals that butyrate accelerates vascular calcification via its dual effects on HDAC inhibition and NF-κB activation. Our data provide novel insights into the role of microbe-host interaction in vascular calcification, and may have implications for the development of potential therapy for vascular calcification.


Assuntos
NF-kappa B , Calcificação Vascular , Animais , Butiratos/metabolismo , Butiratos/farmacologia , Células Cultivadas , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Fosfatos , Propionatos/metabolismo , Propionatos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Calcificação Vascular/patologia , Vitamina D
7.
Angew Chem Int Ed Engl ; 61(34): e202207008, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35713949

RESUMO

A rhodium(I)-diene catalyzed highly enantioselective C(sp2 )-H functionalization of simple unprotected indoles, pyrroles, and their common analogues such as furans, thiophenes, and benzofurans with arylvinyldiazoesters has been developed for the first time. This transformation features unusual site-selectivity exclusively at the vinyl terminus of arylvinylcarbene and enables a reliable and rapid synthetic protocol to access a distinctive class of diarylmethine-bearing α,ß-unsaturated esters containing a one or two heteroarene-attached tertiary carbon stereocenter in high yields and excellent enantioselectivities under mild reaction conditions. Mechanistic studies and DFT calculations suggest that, compared to the aniline substrate, the more electron-rich indole substrate lowers the C-C addition barrier and alters the rate-determining step to the reductive elimination, leading to different isotope effect.


Assuntos
Ródio , Catálise , Indóis , Metano/análogos & derivados , Pirróis , Estereoisomerismo
8.
J Biol Chem ; 298(5): 101887, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367413

RESUMO

Recent genome-wide association and transcriptome-wide association studies have identified an association between the PALMD locus, encoding palmdelphin, a protein involved in myoblast differentiation, and calcific aortic valve disease (CAVD). Nevertheless, the function and underlying mechanisms of PALMD in CAVD remain unclear. We herein investigated whether and how PALMD affects the pathogenesis of CAVD using clinical samples from CAVD patients and a human valve interstitial cell (hVIC) in vitro calcification model. We showed that PALMD was upregulated in calcified regions of human aortic valves and calcified hVICs. Furthermore, silencing of PALMD reduced hVIC in vitro calcification, osteogenic differentiation, and apoptosis, whereas overexpression of PALMD had the opposite effect. RNA-Seq of PALMD-depleted hVICs revealed that silencing of PALMD reduced glycolysis and nuclear factor-κB (NF-κB)-mediated inflammation in hVICs and attenuated tumor necrosis factor α-induced monocyte adhesion to hVICs. Having established the role of PALMD in hVIC glycolysis, we examined whether glycolysis itself could regulate hVIC osteogenic differentiation and inflammation. Intriguingly, the inhibition of PFKFB3-mediated glycolysis significantly attenuated osteogenic differentiation and inflammation of hVICs. However, silencing of PFKFB3 inhibited PALMD-induced hVIC inflammation, but not osteogenic differentiation. Finally, we showed that the overexpression of PALMD enhanced hVIC osteogenic differentiation and inflammation, as opposed to glycolysis, through the activation of NF-κB. The present study demonstrates that the genome-wide association- and transcriptome-wide association-identified CAVD risk gene PALMD may promote CAVD development through regulation of glycolysis and NF-κB-mediated inflammation. We propose that targeting PALMD-mediated glycolysis may represent a novel therapeutic strategy for treating CAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Calcinose , Células Cultivadas , Estudo de Associação Genômica Ampla , Glicólise , Humanos , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Osteogênese
9.
Sheng Li Xue Bao ; 74(6): 949-958, 2022 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-36594383

RESUMO

Tanshinone IIa is a key ingredient extracted from the traditional Chinese medicine Salvia miltiorrhiza (Danshen), and is widely used to treat various cardiovascular diseases. Vascular calcification is a common pathological change of cardiovascular tissues in patients with chronic kidney disease, diabetes, hypertension and atherosclerosis. However, whether Tanshinone IIa inhibits vascular calcification and the underlying mechanisms remain largely unknown. This study aims to investigate whether Tanshinone IIa can inhibit vascular calcification using high phosphate-induced vascular smooth muscle cell and aortic ring calcification model, and high dose vitamin D3 (vD3)-induced mouse models of vascular calcification. Alizarin red staining and calcium quantitative assay showed that Tanshinone IIa significantly inhibited high phosphate-induced vascular smooth muscle cell and aortic ring calcification. qPCR and Western blot showed that Tanshinone IIa attenuated the osteogenic transition of vascular smooth muscle cells. In addition, Tanshinone IIa also significantly inhibited high dose vD3-induced mouse aortic calcification and aortic osteogenic transition. Mechanistically, Tanshinone IIa inhibited the activation of NF-κB and ß-catenin signaling in normal vascular smooth muscle cells. Similar to Tanshinone IIa, inhibition of NF-κB and ß-catenin signaling using the chemical inhibitors SC75741 and LF3 attenuated high phosphate-induced vascular smooth muscle cell calcification. These results suggest that Tanshinone IIa attenuates vascular calcification at least in part through inhibition of NF-κB and ß-catenin signaling, and Tanshinone IIa may be a potential drug for the treatment of vascular calcification.


Assuntos
NF-kappa B , Calcificação Vascular , Animais , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Transdução de Sinais , Miócitos de Músculo Liso/metabolismo , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/metabolismo , Fosfatos/metabolismo
10.
Vascul Pharmacol ; 142: 106932, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34763099

RESUMO

17ß-estradiol (E2) plays a key role in endometriosis through regulation of angiogenesis. Smad1 has been reported to be up-regulated in patients with endometriosis. However, the role of Smad1 in E2-mediated angiogenesis during the development of endometriosis remains to be determined. This study aimed to explore the role of Smad1 in E2-mediated angiogenesis during endometriosis and its underlying mechanisms. Immunofluorescence staining and Western blotting were performed to examine the expression of p-Smad1 in ectopic and control endometrium. Western blotting was used to examine activation of Smad1 signaling in NMECs, EMECs and HUVECs. Tube formation assay was performed to examine the effect of E2 on angiogenesis. Cell proliferation and migration was determined using in real-time by xCELLigence RTCA DP instrument. We found that the expression of p-Smad1 was significantly up-regulated in ectopic endometrium and ectopic intima microvascular endothelial cells. E2 non-genomically stimulated phosphorylation of Smad1 in HUVECs. c-Src and p44/42 MAPK(ERK1/2) signaling pathways are required for E2's induction on Smad1 phosphorylation. Moreover, caveolae is involved in E2-induced Smad1 phosphorylation in vascular endothelial cells. E2 promoted tube formation of vascular endothelial cells through c-Src/ERK1/2/Smad1 signaling pathway. Knockdown of Smad1 expression attenuated E2-induced proliferation and migration of HUVECs. In conclusion, E2 promotes proliferation, migration and tube formation of HUVECs through c-Src/ERK1/2/Smad1 signaling pathway. Our data shed new lights on the mechanisms through which E2 contributes to endometriosis, and may provide novel strategies to treat endometriosis.


Assuntos
Endometriose , Endometriose/metabolismo , Células Endoteliais/metabolismo , Estradiol/farmacologia , Feminino , Humanos , Neovascularização Patológica , Transdução de Sinais
11.
J Am Chem Soc ; 143(23): 8583-8589, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34061536

RESUMO

A one-pot rhodium-catalyzed C-H functionalization/organocatalyzed oxa-Michael addition cascade reaction has been developed. This methodology enables the stereodivergent synthesis of diverse 2,3-disubstituted dihydrobenzofurans with broad functional group compatibility in good yields with high levels of stereoselectivity under exceptionally mild conditions. The full complement of stereoisomers of chiral 2,3-disubstituted dihydrobenzofurans and 3,4-disubstituted isochromans could be accessed at will by appropriate permutations of the two chiral catalysts. The current work provides a rare example of two chiral catalysts independently controlling two contiguous stereogenic centers subsequently via a two-step reaction in a single operation.

12.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924852

RESUMO

Sex differences in cardiovascular disease (CVD), including aortic stenosis, atherosclerosis and cardiovascular calcification, are well documented. High levels of testosterone, the primary male sex hormone, are associated with increased risk of cardiovascular calcification, whilst estrogen, the primary female sex hormone, is considered cardioprotective. Current understanding of sexual dimorphism in cardiovascular calcification is still very limited. This review assesses the evidence that the actions of sex hormones influence the development of cardiovascular calcification. We address the current question of whether sex hormones could play a role in the sexual dimorphism seen in cardiovascular calcification, by discussing potential mechanisms of actions of sex hormones and evidence in pre-clinical research. More advanced investigations and understanding of sex hormones in calcification could provide a better translational outcome for those suffering with cardiovascular calcification.


Assuntos
Androgênios/fisiologia , Estrogênios/fisiologia , Doenças das Valvas Cardíacas/etiologia , Calcificação Vascular/etiologia , Animais , Modelos Animais de Doenças , Doenças das Valvas Cardíacas/metabolismo , Humanos , Transdução de Sinais , Calcificação Vascular/metabolismo
13.
J Am Chem Soc ; 143(6): 2608-2619, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33535750

RESUMO

Asymmetric insertion of an arylvinylcarbenoid into the C-H bond for direct enantioselective C(sp2)-H functionalization of aniline derivatives catalyzed by a rhodium(I)-diene complex was developed for the first time. The reaction occurred exclusively at the uncommon vinyl terminus site with excellent E selectivity and enantioselectivities, providing various chiral γ,γ-gem-diarylsubstituted α,ß-unsaturated esters with broad functional group compatibility under simple and mild conditions. It provides a rare example of the asymmetric C-H insertion of arenes with selective vinylogous reactivity. Synthesis applications of this protocol were featured by several versatile product transformations. Systematic DFT calculations were also performed to elucidate the reaction mechanism and origin of the uncommon enantio- and regioselectivity of the Rh(I)-catalyzed C(sp2)-H functionalization reaction. The measured and computed inverse deuterium kinetic isotope effect supports the C-C bond-formation step as the rate-determining step. Attractive interactions between the chiral ligand and substrates were also proposed to control the enantioselectivity.

14.
Theranostics ; 11(1): 222-256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391472

RESUMO

Macroautophagy (hereafter called autophagy) is a highly conserved physiological process that degrades over-abundant or damaged organelles, large protein aggregates and invading pathogens via the lysosomal system (the vacuole in plants and yeast). Autophagy is generally induced by stress, such as oxygen-, energy- or amino acid-deprivation, irradiation, drugs, etc. In addition to non-selective bulk degradation, autophagy also occurs in a selective manner, recycling specific organelles, such as mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes and lipid droplets (LDs). This capability makes selective autophagy a major process in maintaining cellular homeostasis. The dysfunction of selective autophagy is implicated in neurodegenerative diseases (NDDs), tumorigenesis, metabolic disorders, heart failure, etc. Considering the importance of selective autophagy in cell biology, we systemically review the recent advances in our understanding of this process and its regulatory mechanisms. We emphasize the 'cargo-ligand-receptor' model in selective autophagy for specific organelles or cellular components in yeast and mammals, with a focus on mitophagy and ER-phagy, which are finely described as types of selective autophagy. Additionally, we highlight unanswered questions in the field, helping readers focus on the research blind spots that need to be broken.


Assuntos
Macroautofagia/fisiologia , Mitofagia/fisiologia , Autofagia/fisiologia , Humanos , Organelas
15.
Autophagy ; 17(5): 1142-1156, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32249716

RESUMO

Energy deprivation activates the cellular energy sensor AMP-activated protein kinase (AMPK), which in turn induces macroautophagy/autophagy. The mitochondrial-associated ER membrane (MAM) plays a key role in mitochondrial division and autophagy, and the mitochondrial fusion protein MFN2 (mitofusin 2) tethers the MAM, but the mechanism by which AMPK and MFN2 regulate autophagy in response to energy stress remains unclear. Here, we found that energy stress not only triggers mitochondrial fission and autophagy, but more importantly increases the number of MAMs, a process that requires AMPK. Interestingly, under energy stress, considerable amounts of AMPK translocate from cytosol to the MAM and the mitochondrion as mitochondrial fission occurs. Unexpectedly, AMPK interacts directly with MFN2. The autophagic ability of mouse embryonic fibroblasts (MEFs) lacking MFN2 (mfn2-/-) is significantly attenuated in response to energy stress as compared to wild-type MEFs (WT MEFs), while re-expression of MFN2 in mfn2-/- cells rescues the autophagy defects of these cells. The abundance of MAMs is also greatly reduced in MFN2-deficient cells. Functional experiments show that the oxygen consumption rate and the glycolytic function of cells lacking MFN2 but not MFN1 are obviously attenuated, and MFN2 is important for cell survival under energy stress. In conclusion, our study establishes the molecular link between the energy sensor AMPK and the MAM tether MFN2, and reveals the important role of AMPK and MFN2 in energy stress-induced autophagy and MAM dynamics.Abbreviations: ACTB, actin beta; AMPK, AMP-activated protein kinase; BECN1, beclin 1; CANX, calnexin; ER, endoplasmic reticulum; HRP, horseradish peroxidase; EM, electron microscopy; FL, full-length; KD, kinase dead, KO, knockout; MAb, monoclonal antibody; MAMs, mitochondria-associated membranes; MAP1LC3/LC3B, microtubule associated protein 1 light chain 3; MFN2, mitofusin 2; OPA1, OPA1 mitochondrial dynamin like GTPase; PAb, polyclonal antibody; PtdIns3K, class III phosphatidylinositol 3-kinase; PtdIns3P, phosphatidylinositol 3-phosphate; SD, standard deviation; TEM, transmission electron microscopy; TOMM20, translocase of outer mitochondrial membrane 20; ULK1, unc-51 like autophagy activating kinase 1; MEF, mouse embryonic fibroblast; WT, wildtype.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Membranas Mitocondriais/metabolismo , Mitofagia/fisiologia , Autofagossomos/metabolismo , Fibroblastos/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
16.
Cardiovasc Res ; 117(3): 820-835, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32259211

RESUMO

AIMS: Calcific aortic valve disease (CAVD) is the most common heart valve disease in the Western world. It has been reported that zinc is accumulated in calcified human aortic valves. However, whether zinc directly regulates CAVD is yet to be elucidated. The present study sought to determine the potential role of zinc in the pathogenesis of CAVD. METHODS AND RESULTS: Using a combination of a human valve interstitial cell (hVIC) calcification model, human aortic valve tissues, and blood samples, we report that 20 µM zinc supplementation attenuates hVIC in vitro calcification, and that this is mediated through inhibition of apoptosis and osteogenic differentiation via the zinc-sensing receptor GPR39-dependent ERK1/2 signalling pathway. Furthermore, we report that GPR39 protein expression is dramatically reduced in calcified human aortic valves, and there is a significant reduction in zinc serum levels in patients with CAVD. Moreover, we reveal that 20 µM zinc treatment prevents the reduction of GPR39 observed in calcified hVICs. We also show that the zinc transporter ZIP13 and ZIP14 are significantly increased in hVICs in response to zinc treatment. Knockdown of ZIP13 or ZIP14 significantly inhibited hVIC in vitro calcification and osteogenic differentiation. CONCLUSIONS: Together, these findings suggest that zinc is a novel inhibitor of CAVD, and report that zinc transporter ZIP13 and ZIP14 are important regulators of hVIC in vitro calcification and osteogenic differentiation. Zinc supplementation may offer a potential therapeutic strategy for CAVD.


Assuntos
Valva Aórtica/efeitos dos fármacos , Calcinose/tratamento farmacológico , Doenças das Valvas Cardíacas/tratamento farmacológico , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sulfato de Zinco/farmacologia , Valva Aórtica/enzimologia , Valva Aórtica/patologia , Apoptose/efeitos dos fármacos , Calcinose/enzimologia , Calcinose/patologia , Estudos de Casos e Controles , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Feminino , Doenças das Valvas Cardíacas/enzimologia , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Humanos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Osteogênese/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Sulfato de Zinco/metabolismo
17.
Front Cell Dev Biol ; 8: 692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903766

RESUMO

The mitochondrion, the ATP-producing center, is both physically and functionally associated with almost all other organelles in the cell. Mitochondrial-associated membranes (MAMs) are involved in a variety of biological processes, such as lipid exchange, protein transport, mitochondrial fission, mitophagy, and inflammation. Several inflammation-related diseases in the cardiovascular system involve several intracellular events including mitochondrial dysfunction as well as disruption of MAMs. Therefore, an in-depth exploration of the function of MAMs will be of great significance for us to understand the initiation, progression, and clinical complications of cardiovascular disease (CVD). In this review, we summarize the recent advances in our knowledge of MAM regulation and function in CVD-related cells. We discuss the potential roles of MAMs in activating inflammation to influence the development of CVD.

18.
Trends Endocrinol Metab ; 31(10): 773-784, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32682630

RESUMO

Gender difference is well recognized as a key risk factor for cardiovascular disease (CVD). Estrogen, the primary female sex hormone, improves cardiovascular functions through receptor (ERα, ERß, or G protein-coupled estrogen receptor)-initiated genomic or non-genomic mechanisms. Gaseous signaling molecules, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are important regulators of cardiovascular function. Recent studies have demonstrated that estrogen regulates the production of these signaling molecules in cardiovascular cells to exert its cardiovascular protective effects. We discuss current understanding of gaseous signaling molecules in cardiovascular disease (CVD), the underlying mechanisms through which estrogen exerts cardiovascular protective effects by regulating these molecules, and how these findings can be translated to improve the health of postmenopausal women.


Assuntos
Monóxido de Carbono/metabolismo , Doenças Cardiovasculares/metabolismo , Estrogênios/metabolismo , Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Animais , Feminino , Humanos
19.
Vascul Pharmacol ; 132: 106775, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32702412

RESUMO

BACKGROUNDS: Medial artery calcification (MAC) significantly contributes to the increased cardiovascular death in patients with chronic kidney disease (CKD). Previous genome-wide association studies have shown that various genetic variants of the histone deacetylase Hdac9 are associated with cardiovascular disease, but the role of Hdac9 in MAC under CKD conditions remains unclear. METHODS: High phosphate-induced vascular smooth muscle cell (VSMC) calcification and MAC in mice administered with vitamin D3 (vD) were used in the present study. Alizarin red staining, calcium quantitative assay, qPCR, western blotting and histology were performed. RESULTS: Hdac9 expression was significantly down-regulated during high phosphate-induced vascular smooth muscle cell (VSMC) calcification and MAC in mice administered with vitamin D3 (vD). Furthermore, high phosphate treatment inhibited phosphorylation of Akt, and pharmacological inhibition of Akt signaling reduced Hdac9 expression in cultured VSMCs. Knockdown of Hdac9 significantly enhanced calcium deposition in VSMCs. Conversely, adenovirus mediated-overexpression of Hdac9 inhibited high phosphate induced VSMC in vitro calcification. Our subsequent mechanistic studies revealed that the anti-calcific effect of Hdac9 was mediated through down-regulation of osteoblast-specific transcription factor Osterix. CONCLUSION: These data suggest that Hdac9 is a novel inhibitor of MAC and may represent a potential therapeutic target for MAC in CKD patients.


Assuntos
Histona Desacetilases/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição Sp7/metabolismo , Calcificação Vascular/enzimologia , Animais , Células Cultivadas , Colecalciferol , Modelos Animais de Doenças , Regulação para Baixo , Histona Desacetilases/genética , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Fator de Transcrição Sp7/genética , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/genética , Calcificação Vascular/patologia
20.
Cell Commun Signal ; 18(1): 19, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019549

RESUMO

BACKGROUND: Neutrophils form the first line of innate host defense against invading microorganisms. We previously showed that F0F1 ATP synthase (F-ATPase), which is widely known as mitochondrial respiratory chain complex V, is expressed in the plasma membrane of human neutrophils and is involved in regulating cell migration. Whether F-ATPase performs cellular functions through other pathways remains unknown. METHODS: Blue native polyacrylamide gel electrophoresis followed by nano-ESI-LC MS/MS identification and bioinformatic analysis were used to identify protein complexes containing F-ATPase. Then, the identified protein complexes containing F-ATPase were verified by immunoblotting, immunofluorescence colocalization, immunoprecipitation, real-time RT-PCR and agarose gel electrophoresis. Immunoblotting, flow cytometry and a LPS-induced mouse lung injury model were used to assess the effects of the F-ATPase-containing protein complex in vitro and in vivo. RESULTS: We found that the voltage-gated calcium channel (VGCC) α2δ-1 subunit is a binding partner of cell surface F-ATPase in human neutrophils. Further investigation found that the physical connection between the two proteins may exist between the F1 part (α and ß subunits) of F-ATPase and the α2 part of VGCC α2δ-1. Real-time RT-PCR and PCR analyses showed that Cav2.3 (R-type) is the primary type of VGCC expressed in human neutrophils. Research on the F-ATPase/Cav2.3 functional complex indicated that it can regulate extracellular Ca2+ influx, thereby modulating ERK1/2 phosphorylation and reactive oxygen species production, which are typical features of neutrophil activation. In addition, the inhibition of F-ATPase can reduce neutrophil accumulation in the lungs of mice that were intratracheally instilled with lipopolysaccharide, suggesting that the inhibition of F-ATPase may prevent neutrophilic inflammation-induced tissue damage. CONCLUSIONS: In this study, we identified a mechanism by which neutrophil activity is modulated, with simultaneous regulation of neutrophil-mediated pulmonary damage. These results show that surface F-ATPase of neutrophils is a potential innate immune therapeutic target.


Assuntos
Canais de Cálcio Tipo R/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Espaço Extracelular/metabolismo , Pulmão/metabolismo , Neutrófilos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Adulto , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Lipopolissacarídeos , Pulmão/patologia , Camundongos , Modelos Biológicos , Ativação de Neutrófilo , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Pneumonia/complicações , Pneumonia/metabolismo , Pneumonia/patologia , Ligação Proteica , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...